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Probal Chaudhuri \Ven-Da Lo Wei-Yin Loh

Ching-Ching Yang

Indian Statistical Institute, Calcutta, Chung Cheng Institute of

Technology, Taiwan, University of Wisconsin, Madison, and Feng
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Abstract

A method that blends tree-structured nonparametric regression

with classical maximum likelihood is used in a generalized regression

setting. The function estimates constructed are piecewise polynomials

and are produced together with decision trees containing useful infor-

mation on the regressors. Fitting is carried out by applying maximum

likelihood estimation to subsets of the data, where the subsets are

selected via recursive partitioning and cross-validation pruning. Ex-

amples of Poisson and logistic regression trees are given to illustrate

the method applied to count and binary response data. Large-sample
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properties of the estimates are derived under appropriate regularity

conditions.

Key words and phrases. Generalized linear models. Anscombe resid-

ual, pseudo residual. Vapnik-Chervonenkis class. consistency

1 Introduction: Motivation and main ideas

Consider a general regression set up in which a real-valued response Y is

related to a real or a vector-valued regressor X through an appropriate prob-

ability model, which characterizes the nature of the dependence of Y on X.

To be more specific, let us denote the conditional density or mass function

of Y given X = x as f{ylg(x)}, where the form of f is known but g is an un-

known function, which happens to be the parameter of interest here. There

are plenty of examples that arise in practice and fit into this structure. Some •

well-known cases, which have received extensive attention in the literature.

are the logistic regression model (when the response Y is binary, and g(x)

is the "'logit" of the conditional probability parameter given X = x). the

Poisson regression model (when Y is a nonnegative integer-valued random

variable with a Poisson distribution, and 9(x) is related to its unknown con-

ditional mean given X = x), and more generally, models that are popularly

called generalized linear models (GLM) (Nelder and Wedderburn 1972. Mc-

Cullagh and Nelder 1989), where g is related to the link function. On the

other hand, g(x) may be the unknown location parameter associated with

the conditional distribution of Y given X = x. In other words, Y may sat-

isfy the equation Y = g(X) + (, where the conditional distribution of ( can

be normal. Cauchy or exponential power see. e.g.. Box and Tiao 1973) with

center at zero.

July 25. 1993
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We are interested in the ,it uation where no finite-dilent,,ional parametric

model is imposed on g.. and it i. tsiiimed to be a smooth function with an

appropriate degree of smoothness. Nonparanietric estimation of the fuinc

tional parameter g has been •,xplored by (Cox and 0'Sullivan 1 •9I1. 99 u

(1990). Hastie and Tibshirani ( 19.16. 1990), O+Sullivan. Yandell anti RaY nor

(1986). Staniswalis ( 19S9), Stone ( 1986. 1991a). and others, who considered

various nonparametric smoother,,, when the conditional distribution of the

response given the regressor is assumed to have a known shape te~g.. the

conditional distribution may possess a GLM-type exponential structure).

In the case of the usual regression set up, where Y = gYX ± + # with

E(cjX) = 0. several attempts have been made to estimate g by recursively

partitioning the regressor space and then constructing a regression estimate

in each partition using the method of least squares. Important developments *
along this direction are AID (Sonquist 1970, Sonquist, Baker and Morgan

1973), CART (Breiman, Friedman. Olshen and Stone 1984) and SUPPORT

(Chaudhuri. Huang, Loh and Yao 1993). The purpose of this article is to

explore recursive partitioning algorithms and related likelihood-based non- 0

parametric function estimates in a generalized regression setting.

Two significant advantages enjoyed by recursive partitioning and tree-

structured regression are: 0

"* the decision tree as well as the intermediate and terminal nodes created

by the partitioning algorithm may provide valuable information about

the regressors. and 0

"* the estimates constructed in each terminal node has a simple functional

form. This permits their statistical properties to be studied and lends

July 25. 1993

•__ l Q • •a ... •• • ql) •



i
U-,

aW

4'
insight into the nature of the relationsthip bet%%,en the response and

the regressors with i a noode.

Besides. the adaptive nature of a recur,,ive partitionting algorithm allows

varying degrees of snmoothinK ii -oxer the regressor ,pace -o that the terminal

nodes may have variable sizes. in terms of numbers of observations contained

in those nodes as well as the diameters of the sets in the regressor space to

which they correspond. The main motivation behind Such adaptive variable

smoothing is to take care of heteroscedasticity as well as the possibility that

the amount of smoothness in the functional parameter g may be different

in different parts of the regressor space. This is an improvement over most

of the earlier nonparametric estimation techniques in generalized regression.

which concentrated either on adapti.e but fixed smoothing (i.e., using a

smoothing parameter whose value is constant over the entire regressor space) S

or on deterministic smoothing.

The general methodology explored in this paper consists of two funda-

mental steps.

1. Observations are recursively and adaptively divided into subsets so

that the unknown function g can be satisfactorily approximated by a

simple function (e.g., a constant, a linear function or a polynomial of

suitable degree) in each subset.

2. The function g is estimated from the data in each terminal node by a

polynomial using maximum likelihood. Estimates of the derivatives of

g are given by the corresponding derivatives of the fitted polynomial.

The recursive partitioning algorithm used to create the terminal nodes and

the nature of the function fitted will depend on the problem. In Sections 2

,July 25. 199:3
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and 3, we give some algorithms and examples for illustration (see also Ciampi

and Thiffault (19S9)).

Adaptive recursive partitionming algorithms construct random subsets of

the regressor space which form the terminal nodes. A ;Prious technical bar-

rier in studying the analytic properties of the likelihood-based function esti-

mates is the randomness in these subsets. Our key tool in coping with this

situation is a well-known combinatorial result in Vapnik and Chervonenkis

{1971). In Section 4. we investigate the large sample statistical properties

of the estimates that are constructed via recursive partitioning of the re-

gressor space followed by maximum likelihood estimation of g by piecewise

polynomials. We will consider a very general setting to get good theoretical

insights into the performance of the estimates, and to derive some technical

results under mild regularity conditions. ,

Friedman's (1991) MARS combines spline fitting with recursive parti-

tioning to produce continuous function estimates. The complexity of the

estimates makes interpretation difficult and theoretical analysis of their

statistical properties extremely challenging. In the SUPPORT method of

Chaudhuri et al. (1993). a weighted averaging technique is used to combine

piecewise-polynomial fits into a smooth one. An identical technique can

be used here to create a smooth estimate from a discontinuous piecewise-

polynomial estimate without a'tering the asymptotic properties of the orig-

inal estimate. Friedman (1991) gives some proposals for applying MARS to

logistic regression problems. and Buja. Duffy. Hastie and Tibshirani (1991)

and Stone (1991b) comment on possible extensions and modifications of

MARS to GLM-type exponential response problems. The methodology pre-

sented and analyzed in this article has a clear edge over all these proposals

July 25. 1993
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because of its simplicity and more direct approach. It is hoped that this

will make it more appealing to users. It definitely helps in interpreting the

estimates and in studying their statistical properties.

2 Algorithms for Poisson and logistic regression

trees I

Algorithms for fitting Poisson and logistic regression trees are briefly de-

scribed in this section. Each algorithm has three main components, namely:

1. A method to select the variable and the splitting value to be used at

a partition.

2. A method to determine the size of the tree. *

3. A method to fit a model to each terminal node.

There are many reasonable solutions for each component. and several of

them are described and implemented in FORTRAN 77 in Lo (199:3) and

Yang (1993). In the examples in this paper, two-sample tests for means and

variances are used to find splitting variables (Huang 1989, Chaudhuri et al.

1993). CART's method of cost-complexity pruning (with cost defined as

deviance) is used to determine the size of a tree. Finally, a loglinear model

or a linear logistic regression model is fitted to each terminal node. We begin

with Poisson regression.

2.1 Poisson regression

The following sequence of computations is performed at each node t.

July 25. 1993
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1. A Poisson loglinear model is fitted to the data in t.

2. Let m, = EY, and let ri, be its value estimated from the model. Also

let y, denote the observed value of Y. The adjusted Anscombe residual

(Pierce and Schafer 1986)

i', = /3 (2,/ 3  1 ( /19); 1/3 )}/{(2/3)rh/'}

is calculated for each y, in t. (Yang, 1993, discusses the advantages of

this residual over unadjusted Anscombe, Pearson, and deviance resid-

uals.)

3. Observations with nonnegative r, are classified as belonging to Group

I and the others to Group 2. * S

4. Two-sample t-statistics to test for differences in means and variances

between the two groups along each covariate axis are computed. (The

latter test is Levene's, 1960, test: see Chaudhuri et al. (1993).) The

rationale is that if the model fits adequately, the residuals should look

like noise and there would be little difference between the means and

variances of the two groups. Otherwise, one or more of the test statis-

tics may be expected to be large. This method has proven to be ef-

fective for tree-structured classification (Loh and Vanichsetakul 1988)

and regression with censored data (Ahn and Loh 1994). Its principal

advantage over the exhaustive search strategies of AID and CART is

computational speed.

5. The covariate used to split the node is the one that possesses the most

significant t-statistic among all the tests.

July 25. 1993
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6. The cut-point for the selected covariate is the average of the two group

means along that covariate. Observations with covariate values less

than or equal to the cit-ppoint are channeled to the left ijbnode and

the remainder to the right ,ubnode

7. After an overly large tree is constructed, the nodes are pruned back fol-

lowing CART's pruning method with cost-coinplexity defined as re.sid-

ual deviance plus a constant times the number of terminal nodes of

the tree. As in CART, 10-fold cross-validation is used to determine

the constant and hence the amount of pruning.

8. The final tree is the one that has the smallest cross-validation estimate

of deviance.

* O
2.2 Logistic regression

Because of the 0-1 nature of the Y-variable in logistic regression applications.

the definition of residuals in the preceding algorithm needs to be modified as

follows. Otherwise, the algorithm is similar to that for Poisson regression.

1. The Y-values are first smoothed using a weighted average (similar

to the LOWESS method of Cleveland (1979)) to give a preliminary

estimate p* of the probability p, = P( Y = I ). This estimate is called

a "pseudo-observation."

2. A second estimate P, of this probability from a logistic regression model

fitted to the node is obtained.

3. The -pseudo-residual." r: = (p, - b,)/it(p,). is computed for each

observation. Here &(p;) is an estimate of standard deviation proposed

-July 25. 1993
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x,: •3.363 1

1.r1 <788 2 3

4 5

Figure 1: Pruned tree with 10-fold cross-va.lW4ctiQn for Poisspn exPmple.

The true model is log( m) = 2sin(.r1 - t2 ) + x,. The loglinear inodels in the
ftbfI11141 11mius 4ft glyvis ly liog({m ) " f ( ), - I,4, •, wleFe 4 iltuoLtei 11#1i6
number and f(3) 5.117 - 1.474x, + 2.286x:, f(4) = -0.534 + 1.789x, -

0.4iJ. 2 anid f(M) = 1.146 + .2J tI + 0.04. 1:7-1.

by Fowlkes (1987), whose simulations suggest that the pseudo-residual

is approximately standard normal and independent of the fitted value

for large samples.

4. The pseudo-residual is used in place of the adjusted Anscombe residual

in the algorithm for Poisson regression trees.

3 Numerical examples

Two examples are given in this section to illustrate the algorithms. In the

first example, 100 independent (xl,.£3) pairs are simulated, with x, and

X2 independent uniformly distributed random variables over the intervals

(0, 2r) and (0. 2), respectively. For each-pair, a Poisson response is generated

July 25, 1993
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with mean m given by

log M = 2 sin(X1 - x,) + X .

A plot of m versus the regressors is shown in Figure 2(a). Applying our

Poisson tree algorithm with loglinear fits at each node and 10-fold cross-

validation pruning gives a tree with three~terminal nodes as shown in Fig-

ure 1. The corresponding piecewise-loglinear estimated surface is shown in

Figure 2(b). The fit is remarkably good, even though it is made up of three

separate pieces.

For the second example, we simulate 300 independent observation vec-

tors (Y,,XI,X,.•), i = 1,...,300, where Xjj and X.2 are uniformly and

independently distributed on the square (-1.5, 1.5) x (-1.5, 1.5), and Y, is

Bernoulli with probability p, = P(Y, = 1) given by

log{p,/(1 - pa)} = xil + sin(irxj2 ).

A plot of pi versus xil and x,2 is shown in Figure 3. Figure 4 shows a tree

with six terminal nodes constructed by our logistic regression tree algorithm.

The fitted functions at the terminal nodes are log{pi(1 -pi)} = f(i), where

i denotes the node number and

f(4) = 1.391 - 0.492x, + 1.477X2,

f.(6) = -0.184 - 0.076x, - 0.002x 2 ,

f(8) = 0.706 + 0.962z 1 - 3.198X2,

M(9) = -6.420- 0.855x, + 4.998z2,

July 25, 1993
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(a) True surface ....

C Nq

(b) Estimated surfa .-....

0 -
C6

• 0

0

e b stimated surface.i opsdo he di...con..i..uous. lolna oes

July"2.. 19

-. .

Figure 2: True and estimated surfaces for Poisson regression example. The
estimated surface is composed of three discontinuous loglinear models.

.July 25, 1993
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...............

0

00

0

Figure 3: True function for logistic regression example.

4 X2 :SO.664 .3 6 z2 !<-W067 7

..-- '°' "" " °.F , 76

Figure 4: Pruned tree for logistic regression example.

July 25. 1993
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CL N

Figure 5: Unsmoothed estimate of the function for logistic regression exam-
ple.

July 25, 1993
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..~... ......

00

0

Figure 6: Smoothed estimate of the function for logistic regression example.

* :

f)10) = -3.218+0.147x, - 3.552r,,

f(l1) = 1.279+ 1.399x, -4.31zx,.

The u'nsmoothed and smoothed function estimates are plotted in Figures 5

and 6. respectively. The smoothing is achieved by weighted averaging using

trapezoidal weights (see Lo (1993) for details).

4 Statistical properties of estimates: Some tech-

nical results

Assume that (Y. X,),(VY2.) .... ( I ,nX.,) are independent data points.

where the response Y, is real-valued and the regressor X, is d-dimensional.

.July 25, 1993
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As before, let f{yig(x.,)} be the conditional pdf/pmf of Y, given X, =

x,. We wish to estimate the function g over a compact set C C Rd. Let

T, be a random partition of C (i.e.. C = UET.t), which is generated by

some adaptive recursive partitioning algorithm applied to the data. and it

is assumed to consist of polyhedrons having at most If (a fixed positive

integer) faces. We will denote the diameter of a set t E T, by b(t) (i.e..

6(t) = sup, ,, x - yj), which will be assumed to be positive for each set

t E T,. For t E T,. .. , will denote the average of the X,'s that belong to t.

Also, assuming that the function g is m-th order differentiable (m _> 0). let

us write its Taylor expansion around .X, as

g(x)= -Y(u!)-DDug(X,)(I-.X)- + r,(x,).
E U

Here U = {ulu = (v-, ,. .... . [ u] 5 m}. where [u] = ri + r-, + . . . + '

and the v,'s are nonnegative integers. For u E 1'. D4 is the mixed partial

differential operator with index u. u! = -, =,!. and for x = (Zl. Z2 .. Z).

x"= 'ld=, z.," (with the convention that 0! = I and 0' = 1). We impose the

following condition (cf. Condition (a) in Chaudhuri et al. (1993)) concerning

the behavior of the remainder term in the above Taylor expansion.

Condition 1 maxET. supfEl{6(t)}")tr,(x, X,)l -L 0 as n - x.

Observe that if g is continuously differentiable with derivatives up to

order m on an open set in Rd that contains the compact set C and the

diameters of the sets in T, shrink (i.e.. if supE 6(t) M -L 0) in probability as 5

n - -c (cf. Condition (12.9) in Breiman et al. (1984)). the above condition

automatically holds. However, even if some of the sets in T, do not shrink

-July 25. 1993
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as n grows. Condition I may still be true. In anY case. ('ondition 1 implies

that the function g can be uniformly well approximated by pol.knonials (iJf

degree smaller than or equal to in on each of the sets in T, %hen n is large.

For 0 = (# ),.. let us define the polynomial P(, .Q.\', in .r as

P(Xr0. V,) = # •j,(u!)-; }-,l. - .X,)`

Following the estimation procedure described in the previous sections. let

0, be the estimate obtained by applying the maximum likelihood technique

to the data points (Y_. X,) for which X, E t In other words. 0

0, = ar max rj f{ J V P( X,.0 ý.,}

X.* E
WVe will now state a couple of conditions concerning the distribution of the

X,'s in the regressor space. For X, E t. let r, be the .i U) idimenisional

column vector with components given by (u!)- {O t }-!,]iX, - X, i . where

u E U. Here .ý L) is the size of the finite set 1. which is defined earlier 0

Next. denote by D, the s(U') x q t') matrix defined as JX,., [,F,. where I

indicates transpose.

Condition 2 Let A, = thf number of .X, *s that bf lony to t. (aIld \ =N

min,ET{ 6(t)1.VN. Then .V,/ logn - -x as n - X.

Condition 3 Let A, be the smallest ezgenralue of .\'N-'D, and tt A., =

minuET. A,. Then A. remains bounded away from :cro in probabihty as n -n

Clearly. Condition 2 ensures that there will be sufficientlv many observa-

tions in each of the sets in T, (cf. Condition ( 12.-S in Breiman et al. 1 19*4)

1

.lttl 25,t99S



and Condition ( b) in Chaudhiuri et al. (1993)). C oindit ion 3. onl the oth1er4

hand. guarantees that for large sample size. each of the mat rices Ds will be

nonsingular and nicely behaved (cf. Condition (c) in Chaudhuri et al. (1993))

with a high probability. In a sense, it ensures regularity in the behavior of

the Fisher information matrix associated with the finite-dimiensional nnlodel

fitted to the conditional distribution within each ý,et ini T,3 Note t hat %he are

fitting a polynomial of a fixed dlegree with a finite number of coefficients to

the data points corresponding to any set ini T,.

Finally. we will state a Cram&r-type regularitY condition on the condi-

tional distribution of the response given the regressor. Fthis condition is

absolutely crucial in establishing desirable asymptotic behavior of our esti-

mates, which are constructed via maximum likelihood technique.

Condition 4 Let us view the pdf/pmf f( yr,.) (is (a function of tiro trir- 0

ables so that s becomes a rcal-valned paraniuter raryinig in (a liundda opl Ti

interval J. Here J is such that as xr 01'fsoir 101`1t 1*1 opf n t Mfntalrn-

ing C, g~ .r) takes its values in J. The .upport of ft g y!, for any giqi rl

tI

s- J i.s the same, and it docs not dejx nd onl I~ L. I~o. lo f i y .~I .Hir

times continuously differentiabler ir.r. t. %~ for (myj givin ralut )f 9. and Ift

+~y l i. B yls) and H yls ) bt ther first . F~cond anid third (it rcairt.ti ir f .sf-

tively of log{ f( yjs)) w. r.t. .. rhf randorn ortat-i, UY -o ha', :tr TYi tarl 0

and the mean of B( Y'l) is negatiie anid fay, airay from Je ro to ,1)Ifi

in J. Hiere Y" has pdf/pmf f( yl).~ and thtri, e irvt. a riontiit qatiie funiction

K(y) which dominates each of A) y~st. Ut yis aind II yj.% for- all ralut, of

S

.' E J (ie.A) yjs)f :5 10)y), 'Bf~)l <~ K y) anid 'H y!. )j <- hi y t. Fur-

ther, if Af) i. s) denotfs the mornf-nt genie rating function oif 161') dtfinfd

as %fv.,,; = E [exp{ nh) V )ý u- ith Y haui-nig peif'pnnif f y 'i, Al' i., Ty -

S
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mains bounded as w varies over an open int(trval around thf origin and s

varies over J.

It is appropriate to note here that Condition I is trivially satisfied when

the response Y is binary in nature, or more generally, when its conditional

distribution given the regressor is binomial, and -. is the logit of the prob-

ability parameter such that the probability remains bounded away from 0

and 1. As a matter of fact. this condition will hold whenever the conditional

distribution of the response belongs to a standard exponential family (e.g

binomial. Poisson. exponential. gamma, normal. etc.). and ., i. the natural

parameter taking values in a bounded interval. If f y!.,) happens to be a

location model with s behaving like a location parameter varying over a

bounded parameter space, Condition 4 remain.s true for several important * .
cases like the Cauchy or an exponential power distribution (see e.g.. Box and

Tiao (1973)). In a sense, this condition can be viewed as an extension of

Condition (12.12) in Breiman et al. ( 194 4) and ('ondition d(d in ('haudhuri

et al. ( 1993).

Theorem 1 Suppose that ('onditions 1 through 4 hold. Thi n therf us, a

choice of the maximum likelihood rstimate 0, !lx).sszbly a local inaxizzr-cr of

the likelihood) for every t E T,, %uch that jire it tAny it E 1'.

maxsupjDuP(x.0.X 1 )- Dq'g x -L 0 (a, n -- x.
tiET. E9

The above theorem guarantees that there exists a choice of the ma-ximlum

likelihood estimate 6, for each t E T", so that the resulting piecewise polyno-

mial estimates of the function g and its derivatives are all consistent, Now.

it can very well happen that the estimate O, is only a local maximizer of the

J.ulY 25. 1993
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likelihood instead of being a global maximizer. For instance, the likelihood

based on the data points corresponding to a set in T, may have multiple

maxima. However, when the conditional distribution of the response given

the regressor belongs to a standard exponential family, strict concavity of

the loglikelihood guarantees uniqueness of the maximum likelihood estimate

in large samples. In the special case when we fit a constant (i.e., a polyno-

mial of degree zero) to the data points corresponding to each set in T, using

the maximum likelihood approach. Theorem I gives a useful generalization

of the coasistency result that holds for piecewise constant tree-structured

regression estimates discussed in Breiman et al. (1984). The piecewise poly-

nomial estimates of g and its derivatives are not continuous everywhere in

the regressor space. Smooth estimates, which can be constructed by com-

bining the polynomial pieces by means of smooth weighted averaging, will

be consistent provided the weight functions are chosen properly. Theorem 2

in Chaudhuri et al. (1993) describes a way of constructing families of smooth

weight functions that will give smooth and consistent estimates of g and its

derivatives.

5 Appendix: The proofs

We begin by proving some preliminary results that will be used in the proof

of Theorem 1. Unless stated otherwise, all vectors are assumed to be column

vectors and a superscript T denotes transpose.

Lemma 1 Under Conditions 1, 2 and 4, we have

max NI` {6(t)}-n [AI [A{Y.IP(MX, e,"x)} rt J ]r O as n -oo .
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Here 0, is the s( U) -dimensional vector with a typical entry {6(t)})u1Dug(X.3t)

where u E U. In other words. P(x,0,. Xtt) is nothing but the Taylor poly-

nomial of g(x) erpanded around X.,

Proof. First observe that a straight forward application of the mean

value theorem of differential calculus yields the following

X,EI

N.' E t

-V 1 0-M{I-(t)}-" I: {r,(. ,)} F, (1)
X,EL

X.Et

where Z, is a random variable that lies between P(.X,,0,X 1 ) and g(X,). In

view of Condition 4, the conditional mean of A { Ylg(X)} given X = .r is zero.

and if we denote its conditional moment generating function by M%(w.x).

there exist constants k, > 0 and p, > 0 such that M1 (w'[r) < 2exp(kuw', 2)

for all x E (' and 0 < u, <_ P) (see the arguments at the beginning of Lemma

12.27 in Breiman et al. ( 1984)). At this point, pretend that t is a fixed

non-random polyhedron in Rd. all the data points X,'s that fall in t form a

collection of deterministic points in C, and the corresponding A{Y,jg(X-,I's

form a set of independent random variables such that the distribution of

A{YIg(X,)} is the same as the conditional distribution of it given X, in

the original problem. Note that F, is an s(l" )-dimensional vector with each

component bounded in absolute value by 1. The arguments used in handfing

the -variance term" in the proof of Theorem I in Chaudhuri et al. (1993)

imply that there exist constants k. > 0. k3 > 0 and p2 > 0 (which depend

only on the compact set C'. the integer %([U) and the constants k,, Pi) such

,July 25, 1993
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that

Pr({(t) ... FV-• L.• A{1. ,g(-.')}]F, > p

< k.: ex p[- ka { Nt )j A"". p"]1

< k, exp(-k 3 .V,1 p ),

whenever p < P2. Observe that the first inequality above is a consequence

of Lemma 12.26 in Breiman et al. (1984), which can be applied to each real-

valued component of the s( U )-dimensional vector that appears here. Recall

at this point that each set in T,, is a polyhedron in R" having at most .11

faces. The fundamental combinatorial result of Vapnik and ('hervonenkis

(1971) (Dudley 197A. Section 7) now implies that there exists a collection

C of subsets of the set {X 1 . - .. . . . . . } s u c h t h a t # ( C ) <_ ( 2 n ) Ai d +2 ) . a n d

for any polyhedron with at most Al faces, there is a set t' E C with the

property that X, E t if and only if X, E t'. Hence, even for a collection

like T,, consisting of random polyhedrons generated by an adaptive recursive

partitioning algorithm, we must have the following exponential bound for

the conditional probability given the X,'s and F., (i.e.. after the sets in T.,

are specified).

Pr (maxE {6(t)}-'.Vt-fj Ix, [.-{, X,)}] FI > p, V,.\X......... \, T.)

<ý ( 2n )Ah "I k,-. exp( - k3.V* p-').

It now follows from Condition 2 that

T . E
. 25,as ,, -
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For tlie second term on the right of (1). we have using ('onditions 1. 2

and 4

max -{tu(t}} Z {r,( \,.. ,)B( 1IZ,)} F,
tE TýX, E

• [max{()r K(p V,(x F,)J Z~
XEt

- Oas n- x.

Note that we are using the fact that rnax,•..V, K-l•", )ljFI remains

bounded in probability as n - x- in view of the boundedness of the vectors

F,'s and Conditions 2 and 4. In fact. if ji(.) denotes the conditional mean

of K(Y) given X = x. arguments identical to those used in handling the

first term on the right of (1) yield *

max - P ol(a)-s (X,)}ir, -i Oasn - xIETI ,•

This completes the proof of the lemma.

Lemma 2 Consider the s(U) x s(U) niatrz.r

- I-' F :BfYIIP(.\,.-0,..}] r,rF,
X,EI

and let "y(t) denote its srnalle.,t utg9 rin'alue. Df finc 1.. = inilE r. t). /-h Pn.

under Conditions I through 4. ,,, reimai(L.z po,.,tzui and boutnded away fromn

:ero in probability as n - x.

July 25. 1993
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Proof Once again, let usz write u.iing the mean value theorem of differ-

ential calculus

Z. EB I ,PX-.N I

BY, t=~~N E• t +

where It,,.r is the conditiotnal mean of lB j .i ,} Yiven N = ". and V, i

a randomn %ariable that fall, bett%(,t 9•- X, and o XI_ ,, .N (. Now it i.,

obvious tfroti ( "ontitioti, ,i tltf 4 t liat if ?,. = ti=m in, -. ip f %k here tip I i , tile

-miallest ogetigvalue of lie itiat rix - A :- ' l.• i. . ,, .X )iF, I i i ., rotiiaitif

po.iti•,e atid h bounded ;twav fiofli zero i l prohlrl iility; iot. n - X. ei ftie

other hanld. the tirst tere i oi the right of 21 aii b1e lhallflted III Tlhe ,tllte

wav as the first term oil the riaht of, i i 11 !he proof of Lettmma I to yield

N(,te that the argurtient.. i a i( Ith exploit 'oildi liOlli 2 till] I and acPr- .tpipiePd

to each comiponent of the si Ii iliiei a ioiial . t tor appearinig a. t lie tir.,t termn

on the right of I I i. can be ea.lNiv modtified for ea, It 'lt"%r of tile s, I . .- V

matrix here, Finally. usingt ( liditiois I . 2 ,nild 1. and arguiiinit., thiat are

virtually the same as thoe emniloYed to treat tile second terim on thle right

of (1 ý in the proof of Le itima I . % ot ,ijiti tie f',llo• tg rpsýult tor tile i hird

.lil. 27). 1993B
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term on the right of (2):

max V ',) ( 1111" )}IF, /
tET,

< max suplrdx. IVj LIiax.V Y)F/i
tET. rEt :ET X,E, I

- Oas n - x.

This completes the proof of the lemma.

Proof of Theorem 1: First note that the assertion in the Theorem will

follow if we can show that there exist choices for the maximum likelihood

estimates ( 1 s such that

max{i t,}- 0, - ( _ a. ri - x

For t I.F. let Ii -j) denote the luglikelihood ia.,ed oni he ,,ho erva? ofl

, I. ch that X, It [Vhat 1 .1, lo(9 f j 1, _ t (-). XI

For o > 0. ,eine the evwnt Et, ,), fh, L.,, (-)a .L•,," )

II t cal Iho ocallv t•,n,.r ,., , . . h ,rh .l ,t t-)* : :,

t +' t, } ' . for 0 •ati~f. ine t ', t -.. (- . and it hIt.a, t iiitXtilTrt

,which can he a local maxirlini it li (-)) ha. .e ,,rati lilri.t, in ii,- iltri•,r

of this neivhborhood } Note that hie om irronl•,. ,f tht •.,. ' , it,

the maximum likelihood etal ,ri amen h. ,tbiniiil t"t- r I

E9 will have a root 6, urch that it't,.. (-. -0 -, < g, t Itlah,r

expansion of l, 0) around (7 .id-

1:' -) 1,•( 7 10- - - () , I |• / , () . ,

2 -_. _ . .. . . .
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+ 1,/2) Z) ; (Yr UI-, B Pi v,. V} xo oNET

. (1/6) (j {(-) - ( -); 1Ii rii ' •.

where It, is a random variable lyiing between P( V,. 07. X') and P( X,, 0.

For the third terni on the right of (3). recall that the F,'s are bounded

vectors. Also. for 0 in a sufficiently small neighborhood of (O;. we havey

"•xj, jH(Y,;,V,)I <- 7 .x,ct I't*;)in view of Condition 4. It now follows

from Lemmas I and 2 an(l some of the arguments used in their proofs that

there exists P3 > 0 such that whenever p K p3 , we must have
D

Pr {n E,(I,)} as n. - -c

The proof of the theorem is now complete. * *
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